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In the periodic composite materials temperature or displacement fluctuations suppressed
in directions perpendicular to the periodicity surfaces should expect a damping reaction
from the composite. This phenomenon, known as the boundary effect behavior has been
investigated only in the framework of approximated models. In this paper extended
tolerance model of heat transfer in periodic composites is used as a tool allows analytical
investigations of highly oscillating boundary thermal loadings. It has been shown that
mentioned reaction is dual – different for even and odd fluctuations.

Keywords: even temperature fluctuations, two–phased laminated conductor, boundary
value problem.

1. Introduction

The existence of a series of open questions about using the periodic layer illustrated
in Fig. 1. as a building barrier is a crucial motivation for the topic. The inves-
tigation some of these questions is consider as the aim of the paper. We assume
that the temperature in the region occupied by these septum is caused by two fixed
temperatures: one in the interior and the other inside the room surrounded by
that dividing wall. The layer is thoughtfully cut out from the front wall as shown
in Fig. 2. and this wall is large enough to be assumed that the temperature in
this bulkhead does not change in the x2 direction. Hence the layer can be treated
as a fragment of the another laminated layer infinite along the x 2- direction axis.
For the layer debarked from this wall a new coordinate system will be introduced.
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Hence, the first type boundary value problem for two-phase and infinite along the
x2 axis direction laminated layer, cf.. Fig. 3. will be concerned as a subject of
considerations. The x1-variable, corresponding to the periodicity direction, will be

Figure 1 The considered room and the way leading to the debarking of the layer from
a dividing wall

Figure 2 Considered two-phased periodically layered composite

replaced with the y letter and x3-variable, perpendicular to the periodicity direction,
will be replaced by the zletter in new coordinate system:

(x1, x3) = (x10, x
3
0) + (y, z) (1)

In the formula (1), the variable x 2 was dropped due the assumption that was made
and the sign x0 ≡ (x10, x

2
0, x

3
0) for the coordinates of a fixed point x0 of the front

wall was assumed. Figure 1. illustrates how the layer presented in Figure 2. is
mentally cut from the dividing wall 1.
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The subject of considerations is a stationary boundary value problem for the
parabolic heat conductivity equation. Thus the temperature field θ is not a function
of time. It should be a function of the variables y and z, θ = θ(y , z ), and at the same
time it is known on the boundary ∂Ω of the region Ω occupied by the conductor:

θ(y , z )|(y,z)∈∂Ω = θ∂ (2)

We shall assume that the region Ω in which the temperature field is defined has the
form of rectangle:

Ω = Ξ× Φ (3)

wherein y ∈ Ξ and z ∈ Φ. The parabolic heat conductivity equation for isotropic
constituents and for which the boundary problem has been formulated will be rewrit-
ten in the form:

ρcθ̇ −∇T (k∇θ) = −b (4)

where:

∇ ≡ [∂1, ∂2, ∂3]
T (5)

and the symbols k,ρ, and c, are: the heat conductivity field, the mass density field
and the specific heat field of the considered layer. These fields take constant values
in homogeneity parts of the layer. Symbol b stands for the heat sources. The
heat flux component normal to the planes separating homogeneity regions will be
assumed to be continuous.

2. Thermal boundary loads

Impulses which will be investigated in the framework of the scope of the paper
as loading perturbations imposed on the average temperature field are λ- periodic
under the repetitive layer with the thickness equal toλ. These impulses are di-
vided onto packages indicated by the positive integer v. Every package consists of
three impulses defined below by formulas (7). Hence the choice of the repetitive
cell plays here important role and will be used as the parameter controlling con-
siderations. Figure 3 illustrates the construction of the first package of impulses.
Impulses with support included in the one component regions are referred to as even
impulses. Even fluctuations are considered as linear combinations of even impulses.
In accordance of the Fourier series theory we shall support these impulses to the
orthogonalization procedure.

In the subsequent considerations saturation ηI of the first constituent will be
treated as a certain parameter. We have η = ηI = lI/λ where lI is referred to
the thickness of the first lamina and hence the second constituent saturation ηII =
1− η = lII/λ for lII taken as the thickness of the second lamina. That is why:

ηI =
lI

lI + lII
, ηII =

lII

lI + lII
(6)
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Formulas:

fL(v; y) =

{
λ
2 {1− α1[1 + cos 2πv( y

ληI + 1)]} for − ληI ≤ y ≤ 0
λ
2 {1− α1[1 + cos 2πv( ȳ

ληI + 1)]} for 0 ≤ y ≤ ληII , ȳ = 0

fP (v; y) =

{
λ
2 {1− α2[1 + cos 2πv( ȳ

ληII − 1)]} for − ληI ≤ y ≤ 0, ȳ = 0
λ
2 {1− α2[1 + cos 2πv( y

ληII − 1)]} for 0 ≤ y ≤ ληII

fNP (v; y) =

{
−λ

2 cos(2v − 1)π( y
lI

+ 1) for − lI ≤ y ≤ 0
−λ

2 cos(2v − 1)π( y
lII

− 1) for 0 ≤ y ≤ lII

(7)

define mentioned impulses of the v-th package. For any positive integer v impulses
fL(v; y) , fP (v; y), fNP (v; y)will be referred to as v-th left even, v-th right even and
v-th odd fluctuations, respectively. Coefficients:

αL =
1

ηI + 2ηII
, αR =

1

2ηI + ηII
(8)

provide the fulfillment of oscillation conditions ⟨f1⟩ = ⟨f2⟩ = 0. Used above and
subsequently averaging operation is a typical integral averaging formula defined by:

⟨f⟩ = 1

lI + lII

∫ lII

−lI
f(y)dy (9)

Averaged value ⟨f⟩ of f is constant provided that f is λ-periodic function.
Orthogonalization procedure is understand here as a procedure assigning to impulses
(7) the sequence of λ- periodic fluctuations forming the orthogonal Fourier basis with
respect to the scalar product:

φ1 ◦ φ2 = ⟨φ1φ2⟩ (10)

Figure 3 The first package of three one directional temperature impulses for a two-phase laminate
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The orthogonal procedure used in this paper coincides with that used in [8,9,10]
and hence the orthogonal even fluctuations (”left” and ”right”) are defined by the
formulas:

φL(y) =
fL(v; y) + αfP (v; y)

λ
, φR(y) =

fL(v; y)− αfP (v; y)

λ
(11)

Parameter ? is defined for the pair of ? - periodic fluctuations φ1 and φ2 by the
orthogonalization condition ⟨φ1kφ2⟩ = 0:

α =
⟨fL(v; y)kfL(v; y)⟩
⟨fL(v; y)kfP (v; y)⟩

(12)

For different parameters v1 and v2 all pairs made up of left even φL(v1, y), φL(v2; y),
and right even fluctuations φP (v1; y), φP (v2; y) are orthogonal. Similarly, pairs
made up of even φL(v1; y) and odd fluctuation φNP (v2; y) are orthogonal for differ-
ent parameters and . For any parameters and , not necessary different, pairs made
up of two odd fluctuations φNP (v1; y), φNP (v2; y) are orthogonal.

3. Model equations

In order to answer the question, how the impulses (7) are transported across the
considered laminated layer, we will use the Extended Tolerance Model of heat con-
duction, cf. [8 [8,9,10] as a tool for finding solutions of the parabolic heat transfer
equation, which in the regions of the composite homogeneity can be represented by
the Fourier expansion:

θ(y, z) = u(z) + λap(z)φ
p(y) in Ω\Γ (13)

with respect to a certain orthogonal basis φp(y) of λ - periodic temperature fluctu-
ations.
Index p runs over finite or infinite subset if positive integers in according to the class
of fluctuations we are to investigated and which are formed a corresponding Fourier
basis. Coefficients ap(z) used in (13), usually referred to as Fourier Amplitudes,
not used in the analysis, are assumed to be equal to zero. Here and subsequently
summation convention with respect to any repetitive indices holds.

The coefficients ap(z) of expansion (13) and the average temperature should
satisfy the infinite system of equations:

∇T
Φ[⟨k⟩∇Φu− ⟨k∇gA⟩ψA + ⟨k∇Ξφ

p⟩ap] = ⟨b⟩
λ2∇T

Φ⟨kφpφq⟩∇Φaq + λ(⟨kφq∇T
Ξφ

p⟩ − ⟨kφp∇T
Ξφ

q⟩)∇Φaq
+⟨k∇T

Ξφ
p∇Ξφ

q⟩aq + ⟨k∇T
Ξφ

p⟩∇u = λ⟨φpb⟩
(14)

together with an additional equation:

HABψA + ⟨k∇T
Ξg

A⟩Γ∇u = 0 (15)

allowing to determine amplitudes ψA, A = 1, ..., S, where S is the number of com-
ponents of the periodic composite, related to the fluctuations gA, A = 1, ..., S,
called as tolerance fluctuations describing behaviors strictly related to the surfaces
separating components.
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Equations (14) and (15), are special case of model equations, used for isotropic
conductors, derived in [8], [9] and [10] from the heat transfer equation under the
technique based on the Tolerance Averaging Technique approach, cf. [3-7]. In the
second from equations (14), coefficients in terms including Fourier Amplitudes ap
are the square 3 × 3 matrices. These coefficients are linear combinations of the
conductivity matrices KIand KII of the composite components. Equations (14)
and (15) can be considered as an alternative to the other averaged models of heat
conduction, cf. [1], [2].

Note that for even fluctuations φp:

⟨∇T
Ξφ

pK⟩ = 0 (16)

while:
⟨∇T

Ξφ
pK⟩ ≠ 0 (17)

for the odd ones. It means that equations (14) for even fluctuations amplitudes do
not depend on the average temperature.

In the paper we are to investigate the transport of single pairs of fluctuations
across two-phased periodic composite in two cases: 1o for the pair formed by two
even fluctuations and 2o for the pair formed by even fluctuation and odd fluctuation.
In both cases, we assume the vanishing heat source, b = 0. SymbolIdenotes unit
matrix.

Ad 1o. For any even fluctuation, condition (16) is satisfied and hence equations
(14) separate. For two even fluctuations ⟨∇T

Ξφ
2Kφ1⟩ − ⟨∇T

Ξφ
1Kφ2⟩ = 0 and thus

a single equation for the average temperature u should be taken into account:

∇T
Φ[⟨K⟩∇Φu+ ⟨K∇gA⟩ψA] = 0 (18)

Thus, infinite system of equations (14) reduces to the pair of equations for even
amplitudes:

λ2∇T
Φ⟨φ1Kφ1⟩∇Φa1 − ⟨∇T

Ξφ
1K∇Ξφ

1⟩a1 = 0
λ2∇T

Φ⟨φ2Kφ2⟩∇Φa2 − ⟨∇T
Ξφ

2K∇Ξφ
2⟩a2 = 0

(19)

describing their transport across the considered layer irrespectively of all other fields.
This homogeneous system of ordinary differential equations can be written in the
form:

λ2AK
d2a

dz2
− 2λSK

da

dz
− ⟨k⟩H

⟨k⟩
CKa = 0 (20)

for:

AK =

[
γ1 0
0 γ2

]
, CK =

[
c1 0
0 c2

]
(21)

for vanishing damping matrix coefficient:

SK =

[
0 0
0 0

]
(22)

and for the amplitude vector a ≡ [a1, a2]
T
. Constants, introduced in (21) are given

by formulas:

γ1 =
⟨kφ1φ1⟩

⟨k⟩
, γ2 =

⟨kφ2φ2⟩
⟨k⟩

, c1 =
⟨k

(
d
dyφ1

)2

⟩

⟨k⟩
, c2 =

⟨k
(

d
dyφ2

)2

⟩

⟨k⟩
(23)



Transport of Temperature Fluctuations Across a Two-Phased ... 781

and

d =
⟨kφ1

d
dyφ2⟩ − ⟨kφ2

d
dyφ1⟩

⟨k⟩
(24)

We are to examine how a certain impulse is transported across the considered
composite. This impulse is a linear combination:

ξ1φ1(y) + ξ2φ2(y) (25)

with real coefficients ξ1, ξ2 and for even fluctuations φ1 = φL(v1, y), φ1 = φP (v2, y)
and arbitrary positive integers v1, v2. In the considered case the temperature field
is represented by the reduced form of Fourier expansion (13):

θ(y, z) = u(z) + a1(z)φL(v1, y) + a2(z)φ2(v1, y) (26)

Equations (20) consist of two independent second order differential equations with
constant coefficients.

Ad 2o. Although for an even fluctuation the condition (16) is satisfied, model
equations (14) in the Case 2o are not separated. Thereby the single equation applies
for the average temperature u:

∇T
Φ[⟨K⟩∇Φu+ ⟨K∇gA⟩ψA] = 0 (27)

For A = 1, 2 together with Equation (15) and the infinite system of equations (14)
reducing in the considered case to the equations for the pair of even φ1 = φL(v1, y)
and odd φ2 = φNP (v2, y) fluctuations:

λ2∇T
Φ⟨k(φ1)2⟩∇Φa1 − λ(⟨kφ1∇T

Ξφ
2⟩ − ⟨kφ2∇T

Ξφ
1⟩)∇Φa2 − ⟨k∇T

Ξφ
1∇Ξφ

1⟩a1 = 0
λ2∇T

Φ⟨k(φ2)2⟩∇Φa2 − ⟨k∇T
Ξφ

2∇Ξφ
2⟩a2

+λ(⟨kφ1∇T
Ξφ

2⟩ − ⟨kφ2∇T
Ξφ

1⟩)∇Φa1 + ⟨k∇T
Ξφ

2⟩∇u = 0
(28)

with amplitudes a1 and a2as basic unknowns. Equations (28), written in the absence
of heat sources, reduce to the non-homogeneous system of second order ordinary
differential equations:

λ2AK
d2a

dz2
− 2λSK

da

dz
− ⟨k⟩H

⟨k⟩
CKa = −

[
0
⟨∇T

Ξφ
1K⟩

]
du

dz
(29)

for:

⟨k⟩ = ηIk
I + ηIIk

II , ⟨k⟩H =
kIkII

ηIkII + ηIIkI
(30)

In (29) coefficientsAK and CKare diagonal 2× 2 square matrices:

AK =

[
γ1 0
0 γ2

]
CK =

[
c1 0
0 c2

]
(31)

and the S factor is an antisymmetric square matrix:

SK =

[
0 d
−d 0

]
(32)
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and the amplitude vector a ≡ [a1, a2]
T
. Constants γ1, γ2, c1, c2, d introduced in (31)

and (32) are given by the formulas:

γ1 =
⟨kφ1φ1⟩

⟨k⟩
, γ2 =

⟨kφ2φ2⟩
⟨k⟩

(33)

c1 =
⟨k

(
d
dyφ1

)2

⟩

⟨k⟩H
, c2 =

⟨k
(

d
dyφ2

)2

⟩

⟨k⟩H
(34)

d =
⟨kφ1

d
dyφ2⟩ − ⟨kφ2

d
dyφ1⟩

⟨k⟩
(35)

forφ1 = φL(v1, y), φ2 = φNP (v2, y) and given pair of integer positive indicators
v1,v2.We are to examine how the impulse being a linear combination:

M1φ1(y) +M2φ2(y) (36)

with real coefficientsM1,M2 is transported in the considered composite. Indicators
v1 and v2may be equal here. In this case, the temperature field is represented by
a two–element Fourier expansion (13):

θ(y, z) = u(z) + a1(z)φL(v1, y) + a2(z)φ2(v1, y) (37)

for φ1 ≡ φL(v1, y)and φ2 ≡ φNP (v2, y). Parameters v1 and v2 need not be different
here.

The amplitude vector a ≡ [a1, a2]
T
, as a solution of the non-homogeneous system of

equations (29), is presented as the sum of the amplitude vector b ≡ [b1, b2]
T
, which

satisfies the system of equations:

λ2AK
d2a

dz2
− 2λSK

da

dz
− ⟨k⟩H

⟨k⟩
CKa =

[
0
0

]
(38)

homogeneous for (29) and the special solutionã ≡ [ã1, ã2]
T

to the inhomogeneous
system (29). Thereby:

a = b+ ã (39)

For the considered special case of two-phase laminated layer and in the absence of
heat sources, the boundary conditions are reduced to the boundary conditions for
two amplitudes a1 and a2:

a(0) = a0 ≡ [a1(0), a2(0)]
T

a(δ) = aδ = [a1(δ), a2(δ)]
T (40)

In the next section we are to discuss the solutions to mentioned boundary problem
in both Case 1o and Case 2o.
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4. Solution to BVP

Case 1. In this case solution to the formulated boundary value problem can be
written as:

a1 = − sinhωexp(φ
1) z−δ

λ

sinhωexp(φ1) δ
λ

a1(0) +
sinhωexp(φ

1) z
λ

sinhωexp(φ1) δ
λ

a1(δ)

a2 = − sinhωexp(φ
2) z−δ

λ

sinhωexp(φ2) δ
λ

a2(0) +
sinhωexp(φ

2) z
λ

sinhωexp(φ2) δ
λ

a2(δ)
(41)

for exponential attenuation:

ωexp(φ
1) =

√
⟨k⟩H
⟨k⟩

c1
γ1

(42)

identical for both even fluctuationsφ1 = φL and φ2 = φP .
Case 2. The boundary problem (40) for the system of two equations (29) is reduced
to the pair of two identical fourth order ordinary equations with even derivatives
and with constant coefficients. The fourth order differential equation:

d4

dz4
χ+ [

4d2

γ1γ2
− ⟨k⟩H

⟨k⟩
(
c1
γ1

+
c2
γ2

)]
d2

dz2
χ+

⟨k⟩2H
⟨k⟩2

c1c2
γ1γ2

χ = 0 (43)

is satisfied as well for χ(z) = a1(λz) as forχ(z) = a2(λz). Here (c1, c2), (γ1, γ2) and
(−d2,−d2) are diagonal elements in quadratic matrices AK , CK and S2, respec-
tively. For equation (43) we assign:
(i) biquadratic characteristic equation:

R4 − [
⟨k⟩H
⟨k⟩

(
c1
γ1

+
c2
γ2

)− 4d2

γ1γ2
] R2 +

⟨k⟩2H
⟨k⟩2

c1c2
γ1γ2

= 0 (44)

(ii) quadratic equation (obtained from (44) for r = R2):

r2 − [
⟨k⟩H
⟨k⟩

(
c1
γ1

+
c2
γ2

)− 4d2

γ1γ2
] r +

⟨k⟩2H
⟨k⟩2

c1c2
γ1γ2

= 0, r = R2 (45)

(iii) discriminant of a quadratic characteristic equation:

∆ ≡ [
⟨k⟩H
⟨k⟩

(
c1
γ1

+
c2
γ2

)− 4d2

⟨k⟩γ1γ2
]2 − 4

⟨k⟩2H
⟨k⟩2

c1
γ1

c2
γ2

(46)

(iv) rootsr1, r2, r3, r4 of the quadratic equation (ii):

r = Reri + jImri, j2 = −1, i = 1, 2, 3, 4 (47)

The characteristic equation (i) has four complex roots (47). The minimum absolute
values of the real part and the minimum absolute values of the imaginary part of
these roots are referred to as the exponential (damping) intensity (ωexp) and the
rotational intensity (ωrot) of the amplitudes a1 and a2 respectively. The exponential
and rotational intensity are valued as:

ωexp =

√
1

2
{⟨k⟩H
⟨k⟩

[(
c1
γ1

+
c2
γ2

)− 4d2

γ1γ2
]−

√
∆} and ωrot = 0 for ∆ ≥ 0 (48)
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and to:

ωexp = 1
2

√
⟨k⟩H
⟨k⟩ [( c1γ1

+ c2
γ2
)− 4d2

γ1γ2
] +

√
⟨k⟩2H
⟨k⟩2 [(

c1
γ1

+ c2
γ2
)− 4d2

γ1γ2
]2 −∆

ωrot =
√

−∆

⟨k⟩H
⟨k⟩ [(

c1
γ1

+
c2
γ2

)− 4d2

γ1γ2
]+

√
⟨k⟩2

H
⟨k⟩2

[(
c1
γ1

+
c2
γ2

)− 4d2

γ1γ2
]2−∆

for ∆ ≤ 0

(49)

Open analytical formulas for amplitudes a1 and a2 were obtained in [8]:[
a1
a2

]
= eωexp

z
λTrig+(

z

λ
)

[
C1

C2

]
+ e−ωexp

z
λTrig−(

z

λ
)

[
D1

D2

]
(50)

where:
Trig+(

z
λ ) = A++ cosωrot

z
λ +A+− sinωrot

z
λ ,

T rig−(z) = A−+ cosωrot
z
λ +A−− sinωrot

z
λ

(51)

Columns [C1, C2]
T , [D1, D2]

T depend on the boundary values of the amplitudes
whereas A++, A+−, A−+, A−− are known 2 × 2 square matrices, cf. [8]. These
matrices depend on the conductive and geometrical properties of the laminate. The
solution (50) is a certain extended version of the solutions obtained in [11] for the
approximate tolerance model of heat conduction.

5. Numerical results

We are to construct graphs illustrating amplitudes a1 and a2 as a function of two
variables. The first variable is the quotient of the conductivity kII/kI . The second
variable is the saturation (volume fraction) of the first component. In the numerical
part the following denotations are used: conductivity factor k = kII/kI , volume
share of the second component (saturation factor) η = ηI , damping intensity: ωexp ,
rotational intensity ωrot.
The graphs of damping intensity ωexp defined in (42), according to the parameters
η = ηI and k = kII/kI for the fixed values v = v1 = v2 for the two even fluctuations
φ1 = φL and φ1 = φP in Figures 4,5,6 are presented. In Figure 4. the ranges
0.5 ≤ η ≤ 1 and 0 ≤ k ≤ 2 was deliberately selected to expose the spine of the
graph in the vicinity of k = 1. The dependence of the exponential intensity ωexp

defined in (48) and (49) on the parameters η = ηI and k = kII/kI for the fixed
values v = v1 = v2 for the two even fluctuations (φ1, b1) and (φ2, b2) while φ2 = φL

and φ2 = φNP is a typical dependence formed by the exponential relation, root
relation and the monotonic rational relations, and that is why the corresponding
graphs will not be included here. Graphs in Fig. 4. and Fig. 5. show that the plane
k = 1 (non-distinguishable components of the two-phased laminate) separates two
parts of the graph of exponential intensity. These values asymptotically tend to
infinity, if the arguments v and η determine point identified by (v, η) placed close
to the straight line k = 1 in the (v, η)-plane. Together with the changing of thermal
properties of the layer (k increasing to infinity or decreasing to zero) the exponential
intensity decreases to zero. At the same time also saturation η tends to the number
zero or to the number one (corresponding to very thin sheet occupied by one of the
components) and occurs together with the exponential intensity decreasing to zero.
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Figure 4 Graph of ωexp for 0 ≤ η ≤ 1 and 0 ≤ k ≤ 2

Figure 5 Graph of ωexp for 0 ≤ η ≤ 1 and 0 ≤ k ≤ 1
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Figure 6 Graph of ωexp for 0 ≤ η ≤ 1 and 0 ≤ k ≤ 50

We have not been able to catch the line at which the exponential intensity takes a
local maxima which corresponds to relative large values. The graph in Fig.6 shows
the dependence the rotational intensity on mentioned parameters.

6. Final remarks

In agreement to the aim of the study the transport of even fluctuations, do not
affecting the form of the average temperature and hence do not modifing the effective
conductivity matrix were illustrated. Since during transport these fluctuations are
coupled (cooperate with each other), the paper is limited to the analysis of transport
of pairs of even fluctuations, which in fact can be identified as pairs (φ1, b1) and
(φ2, b2). Even fluctuations are twofold. The first type can be considered as (φL, aL)
or (φP , aP ), where aL is the amplitude of fluctuation φL and ap is the amplitude
of fluctuations φP . The second type of even fluctuations are considered as pairs
(φp, ap), p = 1, 2, ..., satisfying (38) for φp = φNP (v, y) and for v = 1, 2, ..... The
first temperature impulses vanish on the surfaces separating the composite phases,
and the latter are the impulses of the whole repetitive cell. They seem to be the
most representative to the paper considerations. Due to mathematical intricacies,
considerations were limited to the analysis of the exponential (damping) intensity
ωexp and rotational intensity ωrot of such pairs of fluctuations. These parameters
were defined as in the Dissertation [8].

Graphs of these intensities were made as the functions of the two saturation
parameters of the first component η and the conductivity quotient k = kII/kI of
the isotropic components of two-phased layered composite.

Mentioned intensities increases as the thermal properties of both components of
the composite are similar. After a deeper reflection, this result, seemingly surprising,
turns out to be very natural.

Considerations use a model that takes into account the scale effect. Hence ob-
tained solutions are thus controlled by the size λ of the repeatable layer and hence
there are not required restrictions on the thickness of this layer. Such constraints are
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necessary only when the elimination of Fourier amplitudes is realized. Such elimi-
nations usually lead to the creation of a single equation for the average temperature
and thus to the formulation the effective conductivity constant.
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